Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A parallel algorithm for singular value decomposition as applied to failure tolerant manipulators

Abstract

The system of equations that govern kinematically redundant manipulators is commonly solved by finding the singular value decomposition (SVD) of the corresponding Jacobian matrix. This can require considerable amounts of time to compute, thus a parallel SVD algorithm minimizing execution time is sought. The approach employed here lends itself to parallelization by using Givens rotations and information from previous decompositions. The key contributions of this research include the presentation and implementation of a new variation of a parallel SVD algorithm to compute the SVD for a set of post-fault Jacobians. Results from implementation of the algorithm on a MasPar MP-1 and an IBM SP2 are provided. Specific issues considered for each implementation include how data is mapped to the processing elements, the effect that increasing the number of processing elements has on execution time, and the type of parallel architecture used

Similar works

Full text

thumbnail-image

Mountain Scholar (Digital Collections of Colorado and Wyoming)

redirect
Last time updated on 02/12/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.