Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Structure based de novo design of IspD inhibitors as anti-tubercular agents

Abstract

Tuberculosis is one of the leading contagious diseases, caused by Mycobacterium tuberculosis. Despite improvements in anti-tubercular agents, it remains one of the most prevalent infectious diseases worldwide, responsible for a total of 1.6 million deaths annually. The emergence of multidrug resistant strains highlighted the need of discovering novel drug targets for the development of anti-tubercular agents. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD) is an enzyme involved in MEP pathway for isoprenoid biosynthesis, which is considered an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammals. In the present study, we have employed structure based drug design approach to develop novel and potent inhibitors for IspD receptor. To explore binding affinity and hydrogen bond interaction between the ligand and active site of IspD receptor, docking studies were performed. ADMET and synthetic accessibility filters were used to screen designed molecules. Finally, ten compounds were selected and subsequently submitted for the synthesis and in vitro studies as IspD inhibitors

Similar works

This paper was published in Nature Precedings.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.