Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

In Situ Automatic Analog Circuit Calibration and Optimization

Abstract

As semiconductor technology scales down, the variations of active/passive device characteristics after fabrication are getting more and more significant. As a result, many circuits need more accuracy margin to meet minimum accuracy specifications over huge process-voltage-temperature (PVT) variations. Although, overdesigning a circuit is sometimes not a feasible option because of excessive accuracy margin that requires high power consumption and large area. Consequently, calibration/tuning circuits that can automatically detect and compensate the variations have been researched for analog circuits to make better trade-offs among accuracy, power consumption, and area. The first part of this dissertation shows that a newly proposed in situ calibration circuit for a current reference can relax the sharp trade-off between the temperature coefficient accuracy and the power consumption of the current reference. Prototype chips fabricated in a 180 nm CMOS technology generate 1 nA and achieve an average temperature coefficient of 289 ppm/°C and an average line sensitivity of 1.4 %/V with no help from a multiple-temperature trimming. Compared with other state-of-the-art current references that do not need a multiple-temperature trimming, the proposed circuit consumes at least 74% less power, while maintaining similar or higher accuracy. The second part of this dissertation proves that a newly proposed multidimensional in situ analog circuit optimization platform can optimize a Tow-Thomas bandpass biquad. Unlike conventional calibration/tuning approaches, which only handle one or two frequency-domain characteristics, the proposed platform optimizes the power consumption, frequency-, and time-domain characteristics of the biquad to make a better trade-off between the accuracy and the power consumption of the biquad. Simulation results show that this platform reduces the gain-bandwidth product of op-amps in the biquad by 80% while reducing the standard deviations of frequency- and time-domain characteristics by 82%. Measurement results of a prototype chip fabricated in a 180 nm CMOS technology also show that this platform can save maximum 71% of the power consumption of the biquad while the biquad maintains its frequency-domain characteristics: Q, ωO and the gain at ωO

Similar works

This paper was published in Texas A&M Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.