Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A Learning-Based Approach to Caching in Heterogenous Small Cell Networks

Abstract

A heterogenous network with base stations (BSs), small base stations (SBSs), and users distributed according to independent Poisson point processes is considered. SBS nodes are assumed to possess high storage capacity and to form a distributed caching network. Popular files are stored in local caches of SBSs, so that a user can download the desired files from one of the SBSs in its vicinity. The offloading-loss is captured via a cost function that depends on the random caching strategy proposed here. The popularity profile of cached content is unknown and estimated using instantaneous demands from users within a specified time interval. An estimate of the cost function is obtained from which an optimal random caching strategy is devised. The training time to achieve an ∈ > 0 difference between the achieved and optimal costs is finite provided the user density is greater than a predefined threshold, and scales as N 2 , where N is the support of the popularity profile. A transfer learning-based approach to improve this estimate is proposed. The training time is reduced when the popularity profile is modeled using a parametric family of distributions; the delay is independent of N and scales linearly with the dimension of the distribution parameter

Similar works

Full text

thumbnail-image

Princeton University Open Access Repository

redirect

This paper was published in Princeton University Open Access Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.