Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO level

Abstract

We compare the charge transport characteristics of heavy-doped p ++- and n ++-Si-alkyl chain/Hg junctions. Based on negative differential resistance in an analogous semiconductor-inorganic insulator/metal junction we suggest that for both p ++- and n ++-type junctions, the energy difference between the Fermi level and lowest unoccupied molecular orbital (LUMO), i.e., electron tunneling, controls charge transport. This conclusion is supported by results from photoelectron spectroscopy (ultraviolet photoemission spectroscopy, inverse photoelectron spectroscopy, and x-ray photoemission spectroscopy) for the molecule-Si band alignment at equilibrium, which clearly indicate that the energy difference between the Fermi level and the LUMO is much smaller than that between the Fermi level and the highest occupied molecular orbital (HOMO). Furthermore, the experimentally determined Fermi level - LUMO energy difference, agrees with the non-resonant tunneling barrier height, deduced from the exponential length attenuation of the current

Similar works

Full text

thumbnail-image

Princeton University Open Access Repository

redirect

This paper was published in Princeton University Open Access Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.