Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

An optimal gate design for the synthesis of ternary logic circuits

Abstract

Over the last few decades, CMOS-based digital circuits have been steadily developed. However, because of the power density limits, device scaling may soon come to an end, and new approaches for circuit designs are required. Multi-valued logic (MVL) is one of the new approaches, which increases the radix for computation to lower the complexity of the circuit. For the MVL implementation, ternary logic circuit designs have been proposed previously, though they could not show advantages over binary logic, because of unoptimized synthesis techniques. In this paper, we propose a methodology to design ternary gates by modeling pull-up and pull-down operations of the gates. Our proposed methodology makes it possible to synthesize ternary gates with a minimum number of transistors. From HSPICE simulation results, our ternary designs show significant power-delay product reductions; 49 % in the ternary full adder and 62 % in the ternary multiplier compared to the existing methodology. We have also compared the number of transistors in CMOS-based binary logic circuits and ternary device-based logic circuits.1

Similar works

Full text

thumbnail-image

포항공과대학교

redirect
Last time updated on 30/04/2019

This paper was published in 포항공과대학교.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.