Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Satisfiability in Strategy Logic Can Be Easier than Model Checking

Abstract

In the design of complex systems, model-checking and satisfiability arise as two prominent decision problems. While model-checking requires the designed system to be provided in advance, satisfiability allows to check if such a system even exists. With very few exceptions, the second problem turns out to be harder than the first one from a complexity-theoretic standpoint. In this paper, we investigate the connection between the two problems for a non-trivial fragment of Strategy Logic (SL, for short). SL extends LTL with first-order quantifications over strategies, thus allowing to explicitly reason about the strategic abilities of agents in a multi-agent system. Satisfiability for the full logic is known to be highly undecidable, while model-checking is non-elementary.The SL fragment we consider is obtained by preventing strategic quantifications within the scope of temporal operators. The resulting logic is quite powerful, still allowing to express important game-theoretic properties of multi-agent systems, such as existence of Nash and immune equilibria, as well as to formalize the rational synthesis problem. We show that satisfiability for such a fragment is PSPACE-COMPLETE, while its model-checking complexity is 2EXPTIME-HARD. The result is obtained by means of an elegant encoding of the problem into the satisfiability of conjunctive-binding first-order logic, a recently discovered decidable fragment of first-order logic

Similar works

Full text

thumbnail-image

Association for the Advancement of Artificial Intelligence: AAAI Publications

redirect
Last time updated on 30/11/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.