Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Approximable 1-Turn Routing Problems in All-Optical Mesh Networks

Abstract

In all-optical networks, several communications can be transmitted through the same fiber link provided that they use different wavelengths. The MINIMUM ALL-OPTICAL ROUTING problem (given a list of pairs of nodes standing for as many point to point communication requests, assign to each request a route along with a wavelength so as to minimize the overall number of assigned wavelengths) has been paid a lot of attention and is known to be N P–hard. Rings, trees and meshes have thus been investigated as specific networks, but leading to just as many N P–hard problems. This paper investigates 1-turn routings in meshes (paths are allowed one turn only). We first show the MINIMUM LOAD 1-TURN ROUTING problem to be N P–hard but 2-APX (more generally, the MINIMUM LOAD k-CHOICES ROUTING problem is N P–hard but k-APX), then that the MINIMUM 1-TURN PATHS COLOURING problem is 4-APX (more generally, any d-segmentable routing of load L in a hypermesh of dimension d can be coloured with 2d(L−1)+1 colours at most). >From there, we prove the MINIMUM ALL-OPTICAL 1-TURN ROUTING problem to be APX

Similar works

Full text

thumbnail-image

University of New Brunswick: Centre for Digital Scholarship Journals

redirect
Last time updated on 15/12/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.