Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Controlling the Coverage of Wireless Sensors Network Using Coverage in Block Algorithm

Abstract

This research investigate the modeling of Blocks, Present in the sensing field and its impact in the computation of coverage path in wireless sensor networks (WSNs). The solutions of these problems are proposed using techniques from Approximation algorithm. In order to accomplish the designated task successfully, sensors need to actuate, compute and disseminate the acquired information amongst them. Intuitively, coverage denotes the quality of sensing of a sensor node. While a sensor senses. It needs to communicate with its neighboring sensor nodes in order to disseminate the acquired data. That is where connectivity comes in to place. In fact, coverage and connectivity together measure the quality of service (QoS) of a sensor network. Coverage and connectivity in wireless sensor networks are not unrelated problems. Therefore, the goal of an optimal sensor deployment strategy is to have a globally connected network, while optimizing coverage at the same time. By optimizing coverage, the deployment strategy would guarantee that optimum area in the sensing field is covered by sensor, as required by the underlying application, whereas by ensuring that the network is connected, it is ensured that the sensed information is transmitted to other nodes and possibly to a centralized base station (called sink) which makes valuable decision for the application. Many recent and ongoing research in sensor networks focus on optimizing coverage and connectivity by optimizing node placement strategy, minimizing number of nodes to guarantee required degree of coverage, maximizing network lifetime by minimizing energy usage, computing the most and least sensed path in the given region and so on. To solve these optimizing problems related to coverage, exiting research uses mostly probabilistic technique based on random graph theory, randomized algorithm, computational geometry, and so on. Of particular interest to us is the problem of computing the coverage in block (CIB), where give

Similar works

Full text

thumbnail-image

Global Journal of Computer Science and Technology (GJCST)

redirect
Last time updated on 19/10/2022

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.