Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Local Industrialization Based Lucrative Farming Using Machine Learning Technique

Abstract

In recent times, agriculture have gained lot of attention of researchers. More precisely, crop prediction is trending topic for research as it leads agri-business to success or failure. Crop prediction totally rest on climatic and chemical changes. In the past which crop to promote was elected by rancher. All the decisions related to its cultivation, fertilizing, harvesting and farm maintenance was taken by rancher himself with his experience. But as we can see because of constant fluctuations in atmospheric conditions coming to any conclusion have become very tough. Picking correct crop to grow at right times under right circumstances can help rancher to make more business. To achieve what we cannot do manually we have started building machine learning models for it nowadays. To predict the crop deciding which parameters to consider and whose impact will be more on final decision is also equally important. For this we use feature selection models. This will alter the underdone data into more precise one. Though there have been various techniques to resolve this problem better performance is still desirable. In this research we have provided more precise & optimum solution for crop prediction keeping Satara, Sangli, Kolhapur region of Maharashtra. Along with crop & composts to increase harvest we are offering industrialization around so rancher can trade the yield & earn more profit. The proposed solution is using machine learning algorithms like KNN, Random Forest, Naïve Bayes where Random Forest outperforms others so we are using it to build our final framework to predict crop

Similar works

Full text

thumbnail-image

International Journal on Recent and Innovation Trends in Computing and Communication

redirect
Last time updated on 25/10/2023

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.