Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Development of Atomistic Potentials for Silicate Materials and Coarse-Grained Simulation of Self-Assembly at Surfaces

Abstract

This thesis is composed of two parts. The first is a study of evolutionary strategies for parametrization of empirical potentials, and their application in development of a charge-transfer potential for silica. An evolutionary strategy was meta-optimized for use in empirical potential parametrization, and a new charge-transfer empirical model was developed for use with isobaric-isothermal ensemble molecular dynamics simulations. The second is a study of thermodynamics and self-assembly in a particular class of athermal two-dimensional lattice models. The effects of shape on self-assembly and thermodynamics for polyominoes and tetrominoes were examined. Many interesting results were observed, including complex clustering, non-ideal mixing, and phase transitions. In both parts, computational efficiency and performance were important goals, and this was reflected in method and program development

Similar works

Full text

thumbnail-image

Washington University St. Louis: Open Scholarship

redirect
Last time updated on 29/10/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.