Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Application of the modified damage index method to timber beams

Abstract

In this paper the use of two existing algorithms developed for global nondestructive evaluation to locate and evaluate localised damage in timber beams is investigated using a finite element model. These damage localisation algorithms were found, through this investigation, not to be effective in locating multiple damage scenarios and unable to evaluate the severity of damage. Hence, modifications on damage index algorithms as well as a hybrid algorithm are proposed to overcome the problems. In this study, experimental modal analysis (EMA) was used as a tool to extract mode shapes for calculating the damage index in the proposed method which utilises changes in modal strain energy between the undamaged and the damaged timber beam model. The modified damage index (MDI) method normalises the mode shape curvature and the hybrid algorithm combines the modified damage index and changes in flexibility algorithms which reflect the changes of natural frequency and mode shape. Analytical evaluations were performed to compare and verify the ability of original and modified damage localisation algorithms in locating single and multiple damage in timber beams. The modified damage index (MDI) algorithm and the hybrid damage algorithm are also used in the experimental studies to validate the effectiveness of the methods to locate and evaluate damage within timber beams by laboratory experiments. © 2007 Elsevier Ltd. All rights reserved

Similar works

Full text

thumbnail-image

OPUS - University of Technology Sydney

redirect
Last time updated on 14/09/2015

This paper was published in OPUS - University of Technology Sydney.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.