Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Leveraging Deep Learning Based Object Detection for Localising Autonomous Personal Mobility Devices in Sparse Maps

Abstract

© 2019 IEEE. This paper presents a low cost, resource efficient localisation approach for autonomous driving in GPS denied environments. One of the most challenging aspects of traditional landmark based localisation in the context of autonomous driving, is the necessity to accurately and frequently detect landmarks. We leverage the state of the art deep learning framework, YOLO (You Only Look Once), to carry out this important perceptual task using data obtained from monocular cameras. Extracted bearing only information from the YOLO framework, and vehicle odometry, is fused using an Extended Kalman Filter (EKF) to generate an estimate of the location of the autonomous vehicle, together with it's associated uncertainty. This approach enables us to achieve real-time sub metre localisation accuracy, using only a sparse map of an outdoor urban environment. The broader motivation of this research is to improve the safety and reliability of Personal Mobility Devices (PMDs) through autonomous technology. Thus, all the ideas presented here are demonstrated using an instrumented mobility scooter platform

Similar works

Full text

thumbnail-image

OPUS - University of Technology Sydney

redirect
Last time updated on 20/04/2021

This paper was published in OPUS - University of Technology Sydney.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.