Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Model checking quantum Markov chains

Abstract

Although security of quantum cryptography is provable based on principles of quantum mechanics, it can be compromised by flaws in the design of quantum protocols. So, it is indispensable to develop techniques for verifying and debugging quantum cryptographic systems. Model-checking has proved to be effective in the verification of classical cryptographic protocols, but an essential difficulty arises when it is applied to quantum systems: the state space of a quantum system is always a continuum even when its dimension is finite. To overcome this difficulty, we introduce a novel notion of quantum Markov chain, especially suited for modelling quantum cryptographic protocols, in which quantum effects are encoded as super-operators labelling transitions, leaving the location information (nodes) being classical. Then we define a quantum extension of probabilistic computation tree logic (PCTL) and develop a model-checking algorithm for quantum Markov chains. © 2013 Elsevier Inc. All rights reserved

Similar works

Full text

thumbnail-image

OPUS - University of Technology Sydney

redirect
Last time updated on 13/02/2017

This paper was published in OPUS - University of Technology Sydney.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.