Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Sampling decomposable graphs using a Markov chain on junction trees

Abstract

Full Bayesian computational inference for model determination in undirected graphical models is currently restricted to decomposable graphs or other special cases, except for small-scale problems, say up to 15 variables. In this paper we develop new, more efficient methodology for such inference, by making two contributions to the computational geometry of decomposable graphs. The first of these provides sufficient conditions under which it is possible to completely connect two disconnected complete subsets of vertices, or perform the reverse procedure, yet maintain decomposability of the graph. The second is a new Markov chainMonte Carlo sampler for arbitrary positive distributions on decomposable graphs, taking a junction tree representing the graph as its state variable. The resulting methodology is illustrated with numerical experiments on three models. © 2013 Biometrika Trust

Similar works

Full text

thumbnail-image

OPUS - University of Technology Sydney

redirect
Last time updated on 13/02/2017

This paper was published in OPUS - University of Technology Sydney.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.