Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A compromise-based particle swarm optimization algorithm for solving Bi-level programming problems with fuzzy parameters

Abstract

© 2015 IEEE. Bi-level programming has arisen to handle decentralized decision-making problems that feature interactive decision entities distributed throughout a bi-level hierarchy. Fuzzy parameters often appear in such a problem in applications and this is called a fuzzy bi-level programming problem. Since the existing approaches lack universality in solving such problems, this study aims to develop a particle swarm optimization (PSO) algorithm to solve fuzzy bi-level programming problems in the linear and nonlinear versions. In this paper, we first present a general fuzzy bi-level programming problem and discuss related theoretical properties based on a fuzzy number ranking method commonly used. A PSO algorithm is then developed to solve the fuzzy bi-level programming problem based on different compromised selections by decision entities on the feasible degree for constraint conditions under fuzziness. Lastly, an illustrative numerical example and two benchmark examples are adopted to state the effectiveness of the compromise-based PSO algorithm

Similar works

Full text

thumbnail-image

OPUS - University of Technology Sydney

redirect
Last time updated on 13/02/2017

This paper was published in OPUS - University of Technology Sydney.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.