Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Probing Quantum Confinement and Electronic Structure at Polar Oxide Interfaces

Abstract

peer reviewedPolar discontinuities occurring at interfaces between two materials constitute both a challenge and an opportunity in the study and application of a variety of devices. In order to cure the large electric field occurring in such struc- tures, a reconfiguration of the charge landscape sets in at the interface via chemical modifications, adsorbates, or charge transfer. In the latter case, one may expect a local electronic doping of one material: one example is the two-dimensional electron liquid (2DEL) appearing in SrTiO3 once covered by a polar LaAlO3 layer. Here, it is shown that tuning the formal polarization of a (La,Al)1−x(Sr,Ti)xO3 (LASTO:x) overlayer modifies the quantum confinement of the 2DEL in SrTiO3 and its electronic band structure. The analysis of the behavior in magnetic field of superconducting field-effect devices reveals, in agreement with ab initio calculations and self-consistent Poisson–Schrödinger modeling, that quantum confinement and energy splitting between electronic bands of different symmetries strongly depend on the interface total charge densities. These results strongly support the polar discontinuity mechanisms with a full charge transfer to explain the origin of the 2DEL at the celebrated LaAlO3/SrTiO3 interface and demonstrate an effective tool for tailoring the elec- tronic structure at oxide interfaces

Similar works

Full text

thumbnail-image

Open Repository and Bibliography - Liège

redirect
Last time updated on 07/07/2018

This paper was published in Open Repository and Bibliography - Liège.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.