Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Mechanisms of intermittent state transitions in a coupled heterogeneous oscillator model of epilepsy

Abstract

This is the final version of the article. Available from BioMed Central/SpringerOpen via the DOI in this record.We investigate the dynamic mechanisms underlying intermittent state transitions in a recently proposed neural mass model of epilepsy. A low dimensional model is constructed, which preserves two key features of the neural mass model, namely (i) coupling between oscillators and (ii) heterogeneous proximity of these oscillators to a bifurcation between distinct limit cycles. We demonstrate that state transitions due to intermittency occur in the abstract model. This suggests that there is a general bifurcation mechanism responsible for this behaviour and that this is independent of the precise form of the evolution equations. Such abstractions of neural mass models allow a deeper insight into underlying dynamic and physiological mechanisms, and also allow the more efficient exploration of large scale brain dynamics in disease.MG acknowledges funding from the EPSRC through a postdoctoral prize fellowship

Similar works

This paper was published in Open Research Exeter.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.