Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Bielectron vortices in two-dimensional Dirac semimetals

Abstract

This is the final version of the article. Available from Springer Nature via the DOI in this record.There is another record in ORE for this article: http://hdl.handle.net/10871/30749Searching for new states of matter and unusual quasi-particles in emerging materials and especially low-dimensional systems is one of the major trends in contemporary condensed matter physics. Dirac materials, which host quasi-particles which are described by ultrarelativistic Dirac-like equations, are of a significant current interest from both a fundamental and applied physics perspective. Here we show that a pair of two-dimensional massless Dirac–Weyl fermions can form a bound state independently of the sign of the inter-particle interaction potential, as long as this potential decays at large distances faster than Kepler’s inverse distance law. This leads to the emergence of a new type of energetically favorable quasiparticle: bielectron vortices, which are double-charged and reside at zero-energy. Their bosonic nature allows for condensation and may give rise to Majorana physics without invoking a superconductor. These novel quasi-particles arguably explain a range of poorly understood experiments in gated graphene structures at low doping.C.A.D. recognizes financial support from the EPSRC DTP (Award reference 1080089). We also acknowledge support from the CNRS, the EU H2020 RISE project CoExAN (Grant No. H2020-644076), EU FP7 ITN NOTEDEV (Grant No. FP7-607521), and the FP7 IRSES projects CANTOR (Grant No. FP7-612285), QOCaN (Grant No. FP7-316432) and InterNoM (Grant No. FP7-612624)

Similar works

This paper was published in Open Research Exeter.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.