Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Frequency Domain Design of Fractional Order PID Controller for AVR System Using Chaotic Multi-objective Optimization

Abstract

This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.A fractional order (FO) PID or FOPID controller is designed for an Automatic Voltage Regulator (AVR) system with the consideration of contradictory performance objectives. An improved evolutionary Non-dominated Sorting Genetic Algorithm (NSGA-II), augmented with a chaotic Henon map is used for the multi-objective optimization based design procedure. The Henon map as the random number generator outperforms the original NSGA-II algorithm and its Logistic map assisted version for obtaining a better design trade-off with an FOPID controller. The Pareto fronts showing the trade-offs between the different design objectives have also been shown for both the FOPID controller and the conventional PID controller to enunciate the relative merits and demerits of each. The design is done in frequency domain and hence stability and robustness of the design is automatically guaranteed unlike the other time domain optimization based controller design methods

Similar works

This paper was published in Open Research Exeter.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.