Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Low-Power 400-Gbps Soft-Decision LDPC FEC for Optical Transport Networks

Abstract

We present forward error correction systems based on soft-decision low-density parity check (LDPC) codes for applications in 100–400-Gbps optical transport networks. These systems are based on the low-complexity “adaptive degeneration” decoding algorithm, which we introduce in this paper, along with randomly-structured LDPC codes with block lengths from 30 000 to 60 000 bits and overhead (OH) from 6.7% to 33%. We also construct a 3600-bit prototype LDPC code with 20% overhead, and experimentally show that it has no error floor above a bit error rate (BER) of 10−15 using a field-programmable gate array (FPGA)-based hardware emulator. The projected net coding gain at a BER of 10−15 ranges from 9.6 dB at 6.7% OH to 11.2 dB at 33% OH. We also present application-specific integrated circuit synthesis results for these decoders in 28 nm fully depleted silicon on insulator technology, which show that they are capable of 400-Gbps operation with energy consumption of under 3 pJ per information bit

Similar works

This paper was published in Chalmers Publication Library.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.