Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Studying biodiversity–ecosystem function relationships in experimental microcosms among islands

Abstract

Ecological studies on islands have provided fundamental insights into the mechanisms underlying biodiversity of larger organisms, but we know little about the factors affecting island microbial biodiversity and ecosystem function. We conducted a field experiment on five Baltic Sea islands where we placed aquatic microcosms with different levels of salinity mimicking environmental stress and allowed diatoms to colonize the microcosms via the air. Using structural equation models (SEM), we investigated the interconnections among environmental and dispersal‐related factors, diatom biodiversity, and ecosystem productivity (represented by chlorophyll a concentration). We also tested whether the body size structure of the community influences productivity together with biodiversity. In SEMs, we found no relationship between species richness or evenness and productivity. However, productivity increased with increasing mean body size of species in the communities. The effects of environmental stress on both biodiversity and ecosystem productivity were highlighted as species richness and evenness declined, whereas productivity increased at the highest salinity levels. In addition to salinity, wind exposure affected both biodiversity metrics and productivity. This study provides new insights into microbial community assembly in a field experimental setting and the relationship between biodiversity and ecosystem function. Our results indicate that salinity presents a strong abiotic filter, leading to communities that may be species poor, yet comprise salinity‐tolerant and relatively productive species at high salinity. Our findings also emphasize the importance of mean community body size in mediating the effects of environmental conditions on productivity and suggest that this trait should be considered more broadly in biodiversity–ecosystem function studies

Similar works

Full text

thumbnail-image

PubMed Central

redirect
Last time updated on 02/09/2022

This paper was published in PubMed Central.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.