Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Exploiting generative self-supervised learning for the assessment of biological images with lack of annotations

Abstract

MOTIVATION: Computer-aided analysis of biological images typically requires extensive training on large-scale annotated datasets, which is not viable in many situations. In this paper, we present Generative Adversarial Network Discriminator Learner (GAN-DL), a novel self-supervised learning paradigm based on the StyleGAN2 architecture, which we employ for self-supervised image representation learning in the case of fluorescent biological images. RESULTS: We show that Wasserstein Generative Adversarial Networks enable high-throughput compound screening based on raw images. We demonstrate this by classifying active and inactive compounds tested for the inhibition of SARS-CoV-2 infection in two different cell models: the primary human renal cortical epithelial cells (HRCE) and the African green monkey kidney epithelial cells (VERO). In contrast to previous methods, our deep learning-based approach does not require any annotation, and can also be used to solve subtle tasks it was not specifically trained on, in a self-supervised manner. For example, it can effectively derive a dose-response curve for the tested treatments. AVAILABILITY AND IMPLEMENTATION: Our code and embeddings are available at https://gitlab.com/AlesioRFM/gan-dl StyleGAN2 is available at https://github.com/NVlabs/stylegan2

Similar works

Full text

thumbnail-image

PubMed Central

redirect
Last time updated on 22/09/2022

This paper was published in PubMed Central.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.