Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Trajectory-Aided Maximum-Likelihood Algorithm for Channel Parameter Estimation in Ultra-Wideband Large-Scale Arrays

Abstract

Millimeter-wave with ultrawide bandwidth available and ability to pack massive number of antennas in a small area is considered the key enabler for future generation communication systems. Accurate understanding and modeling of the ultrawideband propagation channel with large-scale array configuration is essential. In this contribution, a realistic spherical-propagation signal model considering the spatial nonstationarity of path gain across the array elements is proposed. A novel trajectory-aided maximum-likelihood (TAMax) algorithm is proposed to extract propagation parameters from the measured data, since the existing high-resolution propagation parameter estimation algorithms are not applicable due to either prohibitively high computation loads or assumption violations. In the proposed TAMax algorithm, the high-dimensional maximum-likelihood estimation (MLE) problem is first decomposed into a subproblem where delays and amplitudes of multipath components (MPCs) are estimated at individual array elements. A novel transform is then proposed to identify multiple MPC trajectories in the delay-element domain. With interference cancellation and fast initialization obtained in the proposed transform, spherical propagation parameters are finally acquired via joint MLE with significantly decreased searching spaces. Moreover, a measurement campaign conducted at the frequency band of 27-29 GHz using a virtual uniform circular array is introduced, where the proposed TAMax algorithm is applied and validated.</p

Similar works

This paper was published in VBN.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.