Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Abstract

Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire

Similar works

Full text

thumbnail-image

Online Research Database In Technology

redirect
Last time updated on 22/08/2013

This paper was published in Online Research Database In Technology.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.