Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Finite-Difference Frequency-Domain Method in Nanophotonics

Abstract

Optik og fotonik er spændende og dynamiske forskningsområder i en rivende udvikling, der i høj grad baserer sig på mere og mere komplicerede nanostrukturerede materialer. Numeriske beregninger er ofte uundvrlige for at øge forståelsen af lys-stof vekselvirkning i sådanne kunstige materialer. Denne afhandling præsenterer udviklingen af en rigoristisk finite-difference-metode til løsning af Maxwells ligninger i vilkårlige geometrier i tre dimensioner med fokus på frekvensdomæne-formuleringen. Gennem en metode til at presse det tomme rum opnås en forbedret virkning af perfekt tilpassede lag (Perfectly Matched Layers), og ikke-uniforme ortogonale net benyttes til at øge nøjagtigheden af beregninger for stærkt heterogene strukturer. Eksempler på udregninger med den tre-dimensionelle finite-difference-metode i frekvensdomænet i denne afhandling strækker sig fra lokaliserede tilstande i kaviteter i fotoniske krystal-membraner, kvasi-en-dimensionelle nanobjælke-kaviteter og rkker af side-koblede nanobjælke-kaviteter til modellering af lysudbredelse gennem metalfilm med sprækker der er mindre end bølgelængden.Optics and photonics are exciting, rapidly developing fields building their success largely on use of more and more elaborate artificially made, nanostructured materials. To further advance our understanding of light-matter interactions in these complicated artificial media, numerical modeling is often indispensable. This thesis presents the development of rigorous finite-difference method, a very general tool to solve Maxwell’s equations in arbitrary geometries in three dimensions, with an emphasis on the frequency-domain formulation. Enhanced performance of the perfectly matched layers is obtained through free space squeezing technique, and nonuniform orthogonal grids are built to greatly improve the accuracy of simulations of highly heterogeneous nanostructures. Examples of the use of the finite-difference frequency-domain method in this thesis range from simulating localized modes in a three-dimensional photonic-crystal membrane-based cavity, a quasi-one-dimensional nanobeam cavity and arrays of side-coupled nanobeam cavities, to modeling light propagation through metal films with single or periodically arranged multiple subwavelength slits

Similar works

This paper was published in Online Research Database In Technology.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.