Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Model Predictive Control for Smart Energy Systems

Abstract

I denne afhandling beskriver vi styringsstrategier til fleksible distribuerede energi ressourcer i fremtidens intelligente energisystem – Smart Grid. Energisystemet er et stort komplekst netværk med mange aktører og modstridende mål på forskellige hierarkiske niveauer. En effektiv måde at transportere energi over lange afstande er med elektricitet. El-nettet skal pålideligt forsyne både private og industrielle forbrugere med strøm døgnet rundt. Men i takt med udrulningen af flere vedvarende energikilder, som vind og sol, mindskes forsyningssikkerheden betydeligt på en ellers kontrollerbar el-produktion. Et Smart Grid har derfor brug for fleksible forbrugere, der kan ændre deres forbrug i en bæredygtig retning, hvor der anvendes større andele af grøn energi. Det kræver koordination på stor skala med nye styrings- og optimerings-algoritmer. Et Smart Grid skal derfor sørge for, at der er nok fleksibilitet til rådighed. Særligt i Danmark forventer vi, at en del af den nødvendige fleksibilitet skal komme fra varmepumper og el-biler.Vores tre primære forskningsmål med denne afhandling var at:1.Simulere enhedernes dynamiske forbrug og produktion i el-systemet baseret på simple dynamiske modeller (fx varmepumper, varmeakkumuleringstanke, elbillers batterier, vindmøller, kraftværker).2.Integrere forudsigelser af vejret (fx udetemperatur og solindstråling), elforbruget, og elpriser i et modelprædiktivt kontrolsystem.3.Udvikle optimeringsalgoritmer til dynamiske storskala systemer. Herunder decentral optimering og simulering af realistiske systemer.Kapitel 1 introducerer energi systemet, markederne, og de hovedaktørerne. Deres mål og rolle kontrolhierarkiet opsummeres, mens Aggregatorer introduceres som ny aktør.Kapitel 2 formulerer lineære dynamiske modeller af følgende Smart Grid enheder: elbiler, varmepumper i bygninger, kølesystemer, solvarme, varmeakkumuleringstanke, kraftværker og vindmølleparker. Modellerne realiseres som tilstandsmodeller i diskret tid, der passer ind i et prædiktivt reguleringssystem.Kapitel 3 introducerer modelprædiktiv regulering (MPC). Herudover estimering af tilstande, og prædiktion af lineære modeller.Kapitel 4 simperer modellerne far Kapitel 2 med en certainty-equivalent MPC’en fra Kapitel 3. En økonomisk MPC minimerer omkostningerne til forbrug baseret på rigtige elpriser. Prædiktionerne af prisen bestemmer derved styresignalerne og fleksibiliteten af enheden. Samtidig overholder den prædiktive regulering systemets begrænsninger, fx den øvre grænse for effekt-forbruget i en varmepumpe, ved at udnytte viden fra modellerede forudsigelser af fx elpriser, forbrug og vejret. Simuleringer viser tydeligt den økonomiske MPC minimerer omkostningerne ved at tidsforskyde forbruget afhængigt at priserne. Endvidere undersøgte vi de økonomiske besparelser for forskellige styringsstrategier og forudsigelser.Kapitel 5 beskriver og sammenligner de foreslåede Aggregator styringsstrategier tip storskala systemer. Aggregatorer forventes at spille en stor rolle i fremtidens Smart Grid ved at koordinere store porteføljer af enheder. Den udviklede økonomiske MPC kan interface til en Aggregator enten gennem priser eller direkte styresignaler. Vi har udviklet MPC-baserede styrestrategier, der kan koordinere globale mål for hele porteføljen af enheder ved at løse stor-skala optimerings- og kontrol-problemer. Vi brugte konvekse dekomponeringsmetoder, såsom dual dekomponering og operator splitting.Kapitel 6 opsummerer afhandlingens konklusioner, bidrag og beskriver fremtidigt arbejde.De videnskabelige hovedbidrag kan opsummeres til:•Lineære dynamiske modeller af fleksible Smart Grid enheder: varmepumper i bygninger, varmeakkumuleringstanke, el-biler, kølesystemer, kraftværker, vindmøller.•Økonomisk MPC til styring af enhedernes forbrug og integrere relevante forudsigelser, der påvirker styringsstrategien.•Stor-skala distribuerede styringsstrategier baseret på MPC, konveks optimering, og dekomponeringsmetoder.•En Matlab toolbox til simuleringer af de modellerede enheder med MPC.In this thesis, we consider control strategies for flexible distributed energy resources in the future intelligent energy system – the Smart Grid. The energy system is a large-scale complex network with many actors and objectives in different hierarchical layers. Specifically the power system must supply electricity reliably to both residential and industrial consumers around the clock. More and more fluctuating renewable energy sources, like wind and solar, are integrated in the power system. Consequently, uncertainty in production starts to affect an otherwise controllable power production significantly. A Smart Grid calls for flexible consumers that can adjust their consumption based on the amount of green energy in the grid. This requires coordination through new large-scale control and optimization algorithms. Trading of flexibility is key to drive power consumption in a sustainable direction. In Denmark, we expect that distributed energy resources such as heat pumps, and batteries in electric vehicles will mobilize part of the needed flexibility.Our primary objectives in the thesis were threefold:1.Simulate the components in the power system based on simple models from literature (e.g. heat pumps, heat tanks, electrical vehicle battery charging/discharging, wind farms, power plants).2.Embed forecasting methodologies for the weather (e.g. temperature, solar radiation), the electricity consumption, and the electricity price in a predictive control system.3.Develop optimization algorithms for large-scale dynamic systems. This includes decentralized optimization and simulation on realistic large-scale dynamic systems. Chapter 1 introduces the power system, the markets, and the main actors. The objectives and control hierarchy is outlined while Aggregators are introduced as new actors.Chapter 2 provides linear dynamical models of Smart Grid units: Electric Vehicles, buildings with heat pumps, refrigeration systems, solar collectors, heat storage tanks, power plants, and wind farms. The models can be realized as discrete time state space models that fit into a predictive control system.Chapter 3 introduces Model Predictive Control (MPC) including state estimation, filtering and prediction for linear models.Chapter 4 simulates the models from Chapter 2 with the certainty equivalent MPC from Chapter 3. An economic MPC minimizes the costs of consumption based on real electricity prices that determined the flexibility of the units. A predictive control system easily handles constraints, e.g. limitations in power consumption, and predicts the future behavior of a unit by integrating predictions of electricity prices, consumption, and weather variables. The simulations demonstrate the expected load shifting capabilities of the units that adapts to the given price predictions. We furthermore evaluated control performance in terms of economic savings for different control strategies and forecasts.Chapter 5 describes and compares the proposed large-scale Aggregator control strategies. Aggregators are assumed to play an important role in the future Smart Grid and coordinate a large portfolio of units. The developed economic MPC controllers interfaces each unit directly to an Aggregator. We developed several MPC-based aggregation strategies that coordinates the global behavior of a portfolio of units by solving a large-scale optimization and control problem. We applied decomposition methods based on convex optimization, such as dual decomposition and operator splitting, and developed price-based aggregator strategies. Chapter 6 provides conclusions, contributions and future work.The main scientific contributions can be summarized to:•Linear dynamical models of flexible Smart Grid units: heat pumps in buildings, heat storage tanks, and electric vehicle batteries.•Economic MPC that integrates forecasts in the control of these flexible units.•Large-scale distributed control strategies based on economic MPC, convex optimization, and decomposition methods.•A Matlab toolbox including the modeled units for simulating a Smart Energy System with MPC

Similar works

This paper was published in Online Research Database In Technology.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.