Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Development and application of computer-aided design methods for cell factory optimization

Abstract

Genmodificerede organismer (GMO) kan anvendes til at producere mange alment brugte kemikalier. Modificering af mikroorganismer er en tværdisiplinel proces bestående af fire faser: design, konstruktion, test og analyse. Design- og analysefaserne anvender statistiske modeller, dataanalyse og machine learning. At udvikle stammer til kommercielt relevante processer er tidskrævende og dyrt. Computer-assisteret design (CAD) software hjælper forskere med at konstruere bedre stammer ved hjælp af modeller og algoritmer, der kan generere og teste strategier før de implementeres i laboratoriet.Inden for metabolic engineering er computerbaserede værktøjer allerede i brug i forbindelse med design og analyse af mikroorganismers metaboliske og regulatoriske mekanismer. Genomskala metaboliske modeller (GEMs) beskriver alle de biokemiske reaktioner, der finder sted i cellen samt deres forhold til genomet, og kan således anvendes til at designe mikrobielle cellefabrikker. I denne PhD-afhandling præsenteres cameo, et CAD-værktøj til metabolic engineering der er baseret på GEMs og som implementerer både eksisterende og nyudviklede algoritmer. Algoritmerne er tilgængelige via et brugervenligt API, så de kan anvendes selv uden videregående programmeringsfærdigheder. Ved hjælp af cameo har vi designet en Saccharomyces cerevisiae stamme med forbedret produktion af mevalonate.I fødevareindustrien kan rekombinante DNA-teknikker ikke anvendes på grund af streng lovgivning inden for GMO området, specielt i Europa. Industrien anvender derfor klassisk strainengineering (CSI) eller adaptive laboratory evolution (ALE) til at udvikle nye og forbedrede produkter. På trods af dette kan visse engineering- og design-principper også anvendes til at udvikle stammer inden for denne industri. I denne afhandling præsenterer vi softwaren MARSI, som anvender en helt ny model-baseret design-metode baseret på metabolit-targets. De designs, der findes af MARSI, kan implementeres in vivo enten via CSI eller ALE. Her demonstreres MARSI ved at finde metabolit-targets i Escherichia coli, som kan erstatte eksperimentelt validerede gendeletioner.Genetisk variation forekommer naturligt i celler, men effekterne af varianter er næsten umulige at forudsige og kan påvirke produktiviteten af cellefabrikker. Derudover kan der i stammer, skabt ved hjælp af CSI eller ALE, være opstået mutationer som ikke uden videre kan forklares. I denne afhandling udforskes strategier til at integrere sekventeringsdata med GEMs. Vi præsenterer et workflow til at analysere data fra E. coli vildtype- og mutantstammer samt nært beslægtede stammer. Ydermere evalueres effekten af genetiske variationer på enzymers kcat-parametre. Disse parametre kan bruges til at opstille restriktioner i GEMs for derved at lave bedre forudsigelser af metabolisk aktivitet. Ved hjælp af en kombination af bioinformatik, kemoinformatik, statistik og machine learning, udforskede vi forskellige enzymers kcat ved at inddrage deres sekvenser og kemiske reaktioner.Genetically modified organisms (GMOs) can be used to produce chemicals for everyday applications. Engineering microorganisms is a multidisciplinary task comprising four steps: design, build, test and learn. The design and learn phases rely on computational, statistical models, data analysis and machine learning. The process of creating strains with commercially relevant titers is time consuming and expensive. Computer-aided design (CAD) software can help scientists build better strains by providing models and algorithms that can be used to generate and test hypotheses before implementing them in the lab.Metabolic engineering already uses computational tools to design and analyze the metabolic and regulatory mechanisms of microorganisms. Genome-scale metabolic models (GEMs) describe the biochemical reactions in an organism and their relationship with the genome, hence they can be used to design microbial cell factories. In this PhD thesis we present cameo, a CAD software for metabolic engineering that uses GEMs. State-of-the-art and novel algorithms are implemented in cameo. These algorithms have been made accessible using a high-level API to enable any user to start running them without having advanced programming skills. Using cameo, we designed a Saccharomyces cerevisiae strain with improved mevalonate production. In the food industry, recombinant DNA technologies cannot be used because of strict GMO regulations, especially in Europe. This industry relies on classical strain improvement (CSI) and adaptive laboratory evolution (ALE) to create new and better products. Nevertheless, some engineering and design principles can be applied to create strains in this industrial setup. In this work, we present MARSI, a software tool that uses a completely new model-based approach to strain design, focusing on metabolite targets. MARSI designs can be implemented using ALE or CSI.We used MARSI to enumerate metabolite targets in Escherichia coli that could be used to replaceexperimentally validated gene knockouts.Genetic variability occurs naturally in cells. However, the effects of those variations are unpredictable and can impact the performance of production strains. Moreover, strains resulting from CSI and ALE experiments contain a lot of mutations that are not trivial to explain. In this thesis, we explored strategies to integrate re-sequencing data using GEMs. Here, we present a workflow to integrate and analyze data from E. coli wild-type, mutant and closely related strains. In this study, we evaluated the effect of genetic variability on kcats. These parameters can be used to constrain GEMs and produce more accurate predictions. Therefore, using a combination of bioinformatics, chemoinformatics and machine learning tools, we explored the landscape of kcats using multiple enzyme sequences and their chemical reactions

Similar works

This paper was published in Online Research Database In Technology.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.