Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

High performance computing on SpiNNaker neuromorphic platform: A case study for energy efficient image processing

Abstract

This paper presents an efficient strategy to implement parallel and distributed computing for image processing on a neuromorphic platform. We use SpiNNaker, a many-core neuromorphic platform inspired by neural connectivity in the brain, to achieve fast response and low power consumption. Our proposed method is based on fault-tolerant finegrained parallelism that uses SpiNNaker resources optimally for process pipelining and decoupling. We demonstrate that our method can achieve a performance of up to 49.7 MP/J for Sobel edge detector, and can process 1600 × 1200 pixel images at 697 fps. Using simulated Canny edge detector, our method can achieve a performance of up to 21.4 MP/J. Moreover, the framework can be extended further by using larger SpiNNaker machines. This will be very useful for applications such as energy-aware and time-critical-mission robotics as well as very high resolution computer vision systems

Similar works

Full text

thumbnail-image

The University of Manchester - Institutional Repository

redirect
Last time updated on 01/02/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.