Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Modeling and simulations of light emission and propagation in open nanophotonic systems

Abstract

Lysudsendelse og -udbredelse i fotoniske krystal membraner studeres teoretisk, med fokus p°a bølgeledere, langsomt lys og koblede kavitet-bølgeleder systemer. En formalisme baseret p°a udvikling p°a Bloch modes til optisk modellering af fotoniske krystal membraner præsenteres, og perfectly matched layer grænsebetingelser introduceres for at efterligne°abenheden af den fotoniske krystal membran. Indflydelsen p°a dipolemission i en fotonisk krystal membran bølgeleder af størrelsen af beregningsdomænet samt perfectly matched layer parametre undersøges, og vi finder, at de tilhørende beregningsusikkerheder er større end typiske estimater fra litteraturen. En fotonisk krystal bølgeleder med en eller to sidekoblede kaviteter behandles, og den lokale tilstandstæthed beskrives med en semi-analytisk quasi-normal mode teori. Vi præsenterer originale metoder til at beregne og normalisere quasi-normal modes i udstrakte systemer, og ved sammenligning med numerisk eksakte beregninger forudsiger teorien korrekt en svag asymmetri (en kavitet) samt en top og et dyk (to kaviteter) i spektre for den lokale tilstandstæthed. Som det næste forbinder vi den fotoniske krystal bølgeleder med en sidekoblet kavitet og et spredningspunkt i bølgelederen, og vi demonstrerer, at formen af transmissionsspektret kan kontrolleres af kavitet-spredningspunkt-afstanden og f.eks. udvise asymmetriske Fano-former. Derp°a undersøger vi en aktiv fotonisk krystal bølgeleder i langsomt lys omr°adet og præsenterer en original koblet Bloch mode model, hvor materialeforstærkning behandles perturbativt, og som inkluderer tilbagekobling mellem de kontrapropagerende Bloch modes. Vi viser, at dette giver anledning til distribueret tilbagekobling, der sætter fundamentale begrænsninger p°a den maksimale forstærkning, som langsomt lys komponenten kan yde. Endelig analyseres dipolemission i fotoniske krystal membran bølgeledere, hvor vi designer langsomt og hurtigt lys bølgeledere for øget udsendelse af enkelte fotoner til en guidet mode. Vi undersøger spektre og rumlige kort af dipolemission og finder, at den relative kobling til den guidede mode, , forbliver større end 50%, ogs°a i ikke-optimale situationer, og hurtigt nærmer sig 100% imod b°andkanten. Foreløbige eksperimentelle resultater, der bygger p°a de teoretiske designs, demonstrerer udsendelse fra positionskontrollerede kvantepunkter til bølgeledermoden. I et uafhængigt kapitel studerer vi lokaliserede overfladeplasmoner af plasmoniske nano dimere, og b°ade teoretisk og eksperimentelt finder vi en næsten-invers skalering af det relative skift af plasmonbølgelængden med partikelafstanden i sub-radius omr°adet.Light emission and propagation in photonic crystal membranes are studied theoretically, with an emphasis on waveguides, slow light effects, and coupled cavity-waveguide systems. A Bloch mode expansion formalism for optical modeling of photonic crystal membranes is presented, and perfectly matched layer boundary conditions are introduced to emulate the inherent openness of the photonic crystal membrane. The impact of the computational domain size and perfectly matched layer parameters on dipole emission in a photonic crystal membrane waveguide is investigated, and we find the associated computational uncertainty to be of larger magnitude than typical estimates found in literature. A photonic crystal waveguide with one or two side-coupled cavities is considered, and the local density of states is described using a semi-analytical quasi-normal mode theory. We propose original techniques for computing and normalizing quasi-normal modes in extended systems, and comparing to numerically exact calculations, the theory correctly predicts a slight asymmetry (one cavity) and a peak and a dip (two cavities) in the local density of states spectra. Next, the photonic crystal waveguide is interfaced with a side-coupled cavity and a scattering site in the waveguide, and we demonstrate that the shape of the transmission spectrum can be controlled by the cavity-scattering site distance, for example to exhibit a symmetric Fano shapes. Subsequently, we investigate an active photonic crystal waveguide in the slow light region and present an original coupled Bloch mode model, with material gain treated as a perturbation, that includes back-coupling between the counter propagating passive Bloch modes. We show that this gives rise to distributed feedback, which puts fundamental limitations on the maximum achievable gain of the slow light amplifier. Finally, dipole emission in photonic crystal membrane waveguides is analyzed, where we design slow and fast light waveguides for enhanced single-photon emission into a guided mode. We investigate spectra and spatial maps of dipole emission and find that the relative coupling into the guided mode, β, remains in excess of 50%, even in non-optimum situations, and quickly approaches unity towards the band edge. Preliminary experimental results that build on the theoretical designs demonstrate emission from position-controlled quantum dots into the waveguide mode. In a disjoint chapter, we study the localized surface plasmon modes of plasmonic nanodimers, and both theoretically and experimentally, we find an almost-inverse scaling of the relative shift of the plasmon wavelength with particle distance in the sub-radius range

Similar works

This paper was published in Online Research Database In Technology.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.