Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Context-Adaptive Sub-Nyquist Sampling for Low-Power Wearable Sensing Systems

Abstract

This paper investigates a context-adaptive sample acquisition strategy at sub-Nyquist sampling rate for wearable embedded sensor devices. Our approach can be applied to compressive sensing frameworks to minimise sampling and transmission costs. We consider a context estimate to represent the local signal structure and a feed-forward response model to continuously tune signal acquisition of an online sampling and transmission system. To evaluate our approach, we analysed the performance in different pattern recognition scenarios. We report three case studies here: (1) eating monitoring based on electromyography measurements in smart eyeglasses, (2) human activity recognition based on waist-worn inertial sensor data, and (3) heartbeat detection and arrhythmia classification based on single-lead electrocardiogram readings. Compared to conventional sub-Nyquist sampling, our context-adaptive approach saves between 13% to 22% of energy, while achieving similar pattern recognition performance and reconstruction error

Similar works

This paper was published in Ulster University's Research Portal.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.