Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Inter-Plane Inter-Satellite Connectivity in Dense LEO Constellations

Abstract

With numerous ongoing deployments owned by private companies and startups, dense satellite constellations deployed in low Earth orbit (LEO) will play a major role in the near future of wireless communications. In addition, the 3rd Generation Partnership Project (3GPP) has ongoing efforts to integrate satellites into 5G and beyond-5G networks. Nevertheless, numerous challenges must be overcome to fully exploit the connectivity capabilities of satellite constellations. These challenges are mainly a consequence of the low capabilities of individual small satellites, along with their high orbital speeds and small coverage due to the low altitude of deployment. In particular, inter-plane inter-satellite links (ISLs), which connect satellites from different orbital planes, are greatly dynamic and may be considerably affected by the Doppler shift. In this paper, we present a framework and the corresponding algorithms for the dynamic establishment of the inter-plane ISLs in LEO constellations. Our results show that the proposed algorithms increase the sum of rates in the constellation 1) by up to 115% with respect to the state-of-the-art benchmark schemes in an interference-free environment and 2) by up to 71% when compared to random resource allocation in a worst-case scenario for interference.</p

Similar works

This paper was published in VBN.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.