Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Improved radiotherapy for locally advanced Non-Small Cell Lung Carcinoma (NSCLC) patients

Abstract

Lungecancer er den næst-hyppigeste kræftsygdom i Danmark, med ca. 4500 nye tilfælde i 2012, hvor ca. 18% af patienterne med lungecancer blev henvist til strålebehandling. Dødeligheden blandt patienter med lungecancer er højere end ved de fleste andre former for cancer, og 5 års overlevelsen er kun 12%. Der er derfor et presserende behov for forbedring af strålebehandling til patienter med lungekræft. Strålebehandling af lunge-tumorer er vanskelig, fordi tumoren bevæger sig med vejrtrækningen. Deep-Inspiration-Breath-Hold (DIBH) gating er en teknik, som potentielt kan forbedre strålebehandlingen af patientgruppen. DIBH bruges rutinemæssigt til brystcancer-patienter, men det er stadigt en eksperimentel metode til lungecancer-patienter. Ved DIBH gating vejledes patienterne i at holde vejret tæt på deres maksimale inspiration i den tid (15-30 sekunder) strålebehandling og billeddannelse varer. Dette fører bland andet til en dæmpning af tumorens bevægelse og en udvidelse af lungevævet, hvilket er en fordel med hensyn til at skåne det rask lunge væv. Ved planlægning af stråleterapi appliceres margener omkring tumoren for at sikre at den planlagte dosis levereres til tumorvolumen og, at der tages højde for de usikkerheder der er under planlægning og behandling (for eksempel på grund af respiration, andre organ bevægelser, lejringsusikkerheder af patienten etc.). De ekstra margener resulterer i at et større område omkring tumoren bestråles, hvilket øger risikoen for toksicitet i tilstødende normalt væv. Ved at bruge DIBH gated stråleterapi kan det bestrålede volumen omkring tumoren potentielt reduceres, og derved kan rask lungevæv og omkringliggende risiko-organer bedre skånes for stråling. Dette kan gøre det muligt at øge stråledosis til kræftvævet uden at give for meget dosis til risikoorganerne.Formålet med den kliniske del i denne afhandling var at afklare den mulige kliniske gevinst ved at tilbyde DIBH gating til patienter med lokalt-avanceret lungecancer. Tre forskellige studier er udført hvor planlægnings- og opstillingsbilleder optaget i DIBH og frit åndedræt (free-breathing, FB) er evalueret.Under behandlingsforløbet over flere uger kan det ske at anatomien i patienterne ændrer sig, og det kan derfor være nødvendigt at adaptere planen undervejs. At definere det anatomiske volumen til planlægning af strålebehandling er en vigtig og tidskrævende proces som tillige indeholder store usikkerheder. For at spare tid og mindske usikkerhederne forbundet med anatomidefinition, kan planlægnings-CT billedet registreres med den nye CT-skanning, eller de daglige setup verifikationsbillederne taget på acceleratoren. Efterfølgende kan de oprindelige strukturer propageres til de nye billeder. I Studie I undersøges usikkerheder relateret til automatisk deform billederegistrering brugt til det formål at propagere anatomiske strukturer. Vi fandt at den deforme registrerings-algoritme ikke var tilstrækkelig god til at korrigere for billedartefakter, som forstyrrede billedet eller store anatomiske forandringer. Endvidere fandt vi ikke nogen forskel mellem DIBH og FB.I Studie II undersøges forskellige daglige setup verifikationsprotokoller med det formål at mindske de applicerede margener. Ved mindre margener kan det friske omkringliggende væv bedre skånes for stråledosis, hvilket giver en bedre behandling for patienterne. Vi fandt at den billedbaserede opstillingsprotokol, der resulterede i det mindste planlagte bestrålingsvolumen (planning target volume, PTV) var baseret på bløddelsmatch på tumoren, uanset FB eller DIBH. Vi fandt også at DIBH introducerede større afvigelser i længderetningen i forhold til frit åndedræt. Dette mener vi har at gøre med at patienterne kompenserer sin dybe indånding med at bue ryggen for at opnå det vejrtrækningsniveau, der var forudbestemt i planlægningsstadiet. Dog var det resulterende DIBH PTV imidlertid mindre i forhold til det i FB.I Studie III undersøges den kliniske dosimetriske gevinst med DIBH i forhold til FB. Udover almindelige dosberegninger udførtes også mere detaljerede Monte Carlo simuleringer for at opnå mere korrekte dosisberegninger i heterogene geometrier. Vi fandt at DIBH resulterede i bedre beskyttelse af risikoorganer fra unødvendig bestråling end FB. Dog viste Monte Carlo simuleringerne at dosisdækningen af tumorvolumen ikke modsvarede den dosis, der var planlagt, hvor der var lige så dårlig dosisdækning for FB som for DIBH. Dette problem med dosisdækningen af tumorvolumen er derfor relateret til dosberegningsalgoritmens begrænsninger og ikke til den vejrtrækningsteknik, der var brugt.Formålet med den tekniske del i denne afhandling var at udvikle og anvende et målefantom for klinisk relevant dosimetri i heterogene geometrier. Det er velkendt at de fleste kommercielle dosisberegningssystemer ikke kan udføre korrekte beregninger af hvordan stråling spredes og absorberes i kroppen, når der forekommer store forskelle mellem densiteter og atomnummer. De største unøjagtigheder er i overgangen mellem forskellige materialer. Et målefantom, der simulerer en lungecancer-patient, er derfor udviklet med formålet at udføre uafhængige dosiskontroller af kliniske strålebehandlings-planer i veldefinerede heterogene og homogene geometrier. Lungerne simuleres af balsatræ med lav densitet, kroppen af plexiglas, og knogle af delrin med høj densitet. Arbejdet med at udvikle dette fantom er en del af det europæiske fælles forskningsprojekt ”Metrology for radiotherapy using complex radiation field” som er finansieret i fællesskæb af landene indenfor EMRP (European Metrology Research Programme) indenfor EURAMET og EU. Udviklingen af et menneskelignende fantom til at evaluere dosisberegningssystemer indgår i arbejdspakke 6 ”Methods for verification of treatment planning systems in anthropomorphic phantoms”.I Studie IV undersøges et kommercielt dosisberegningssystem ved brug af scintillationsdosimetri og det heterogene menneskelignende målefantom. Forskellige fantomkonfigurationer og behandlingsplaner med varieret kompleksitet evalueredes. Vi fandt god overensstemmelse med de mindst komplekse geometrier, mens der var dosisafvigelser over 4% i de mere komplekse tilfælde. Vores resultater understreger, at der er dosimetriske udfordringer i det kommercielle dosisplanlægningssystem. Scintillations-systemet sammen med den særlige phantom er et lovende redskab til evaluering af levering af komplekse og klinisk relevante strålebehandlingsplaner.Udfordringen med at beregne korrekt dosis er størst for små felter, og for geometrier med store inhomogeniteter på grund af ukorrekt beregning af spredt stråling. Det er kendt, at tumorer mindskes eller øges i størrelse over behandlingsforløbet. Formålet med strålebehandling er at levere den samme ordinerede dosis til tumorvolumen, uanset størrelsen af tumoren, og uanset hvilken patient det er. I Studie V undersøges derfor dosimetrien ved forskellige tumorstørrelser i målefantomet. Lungetumorer med størrelser mellem 1-8 cm i diameter var positioneret i center i fantomet, og omgivet af balsatræ med lav densitet. Vi fandt alvorlige dosisberegningsproblemer, specielt for små tumorer ≤ 2 cm i størrelse. Vores resultater indikerer derfor at der er en alvorlig tumor-størrelse afhængighed, der potentielt kunne påvirke planlægningen af strålebehandlingen af lungepatienter.Denne afhandling konkluderer, at den kliniske gevinst ved at behandle med DIBH ikke altid er bedre end at give behandlingen i FB. Der blev endvidere identificeret alvorlige tumor-størrelse afhængige dosisafvigelser, der potentielt kunne påvirke planlægningen af strålebehandlingen af lungepatienter. Det udviklede målefantom og scintillator viser et stort potentiale til at evaluere dosisberegninger i heterogene geometrier bestrålede med både simple og komplekse klinisk relevante behandlingsplaner.Lung cancer is worldwide one of the most common cancer diseases with a high mortality rate. There is thus an urgent need for improving radiotherapy for these patients. Radiotherapy for lung cancer patients is challenging because the tumor and organs at risk (OARs) move with the breathing motion. Deep-Inspiration-Breath-Hold (DIBH) is a technique that potentially can improve the treatment for these patients. DIBH is frequently and routinely used for breast cancer treatments. However, it is still an experimental method for lung cancer patients e.g. due to preconceptions about their incapability to comply with the DIBH technique. For DIBH, the patients are guided to hold their breath almost at their maximum inspiration level during imaging and treatment. This leads to reduction of the breathing motion which decreases the movement of the tumor and OARs. It also expands the lung tissue which is beneficial with respect to sparing the healthy lung from radiation. In order to ensure that the tumor is receiving the prescribed dose, safety margins are added to the gross tumor volume (GTV). The size of the margins depends on the uncertainties related to the patient setup, target delineation, respiration, other internal motion, etc. These extra margins result in larger irradiated volumes, increasing the risk of radiation-induced side effects. By reducing the uncertainties and thereby the margins, the healthy tissue can be spared from unnecessary radiation. The respiratory uncertainties can potentially be reduced by the DIBH method for the lung cancer patients.The overall aim of the clinical part of this thesis was to clarify the potential benefit of offering DIBH gating, compared to free-breathing (FB), for lung cancer patients. Particularly, the benefits for locally advanced non-small cell lung cancer (NSCLC) patients were explored. For the dosimetric part of the thesis, the dosimetric aspects of correct dose calculations in heterogeneous patient-like geometries were studied.The clinical aspects of DIBH were evaluated in three different studies, where planning and setup verification images acquired in both FB and DIBH were evaluated.In adaptive radiotherapy (ART) the treatment plan is adapted to geometrical changes of the patient over the course of treatment. However, defining anatomical structures for treatment planning is a time consuming process prone to large uncertainties. In order to save time and to reduce the uncertainties during ART, image registrations between the planning computed tomography (CT) and the subsequently acquired images may facilitate the delineation process. Study I investigated the uncertainties related to automatic deform image registrations between the planning CT and the setup images acquired at the accelerator, and the extra CTs acquired over the course of treatment. The studied algorithm was found not to be adequate enough to correct for image artifacts and large anatomical deformations present in the images. Furthermore, no difference between DIBH and FB was observed.Study II investigated different image based setup verification protocols. The goal was to minimize the applied setup margins. It was found that soft-tissue registration on the tumor volume resulted in the smallest planning target volume (PTV), irrespectively of FB and DIBH. Setup uncertainties were however introduced during DIBH, but the resulting PTV in DIBH was nevertheless smaller compared to FB. We speculate the increased uncertainty was due to some patients tended to arch with their back to compensate for their insufficient compliance to reach the breath-hold amplitude level.Study III investigated the clinical dosimetric benefit of DIBH treatments, planned using a commercial Anisotropic-Analytical-Algorithm (AAA) dose calculation algorithm. Detailed Monte Carlo (MC) simulations were carried out for this purpose. DIBH resulted in better dose sparing of the OARs, compared to FB. However, the MC simulations revealed similar inferior target dose coverage between MC and AAA irrespectively of FB and DIBH treatment plans. This observation is therefore related to the treatment planning dose calculation algorithm rather than the breathing adapted treatment technique.The dosimetric aspects of complex dosimetry in heterogeneous patient-like geometries were explored in two different studies in the thesis. In order to investigate known calculation issues in the thorax region, a thoracic-like phantom was designed and constructed to obtain detailed dosimetry information in heterogeneous clinically relevant geometries. The lungs of the phantom were constructed in low-density balsa wood, the body in Poly(methyl methacrylate) (PMMA), and the bone in high-density delrin.Study IV investigated the performance of AAA, using a plastic scintillator detector system and the well-defined heterogeneous phantom. The treatment planning system (TPS) calculated doses agreed for the least complex cases, while for the more complex cases dose deviations ≥ 4% were observed. The dosimetric challenges in TPS calculations for clinically relevant geometries were underpinned.For lung cancer treatments, tumor volume changes during radiotherapy are well known. Due to incorrect scatter calculations by the TPS, the dosimetric challenges increase when tumor and field sizes decrease. The philosophy of radiotherapy is to deliver the same prescribed dose to the tumor volume, irrespective of the size of the tumor.Study V investigated the dosimetric challenges for the TPS in the heterogeneous thoracic-like geometry and its dependence on tumor size. Thus, a change of tumor size and resulting plan adaption over the course of a treatment was simulated. For this purpose, tumor inserts of different sizes (ranging from 1-8 cm in diameter) was used in the phantom. Severe dose deviations were observed, especially for small tumor sizes ≤ 2 cm in diameter. Our results imply that there exist severe tumor-size dependency, which potentially could have implications on the radiotherapy treatment planning of lung cancer.This thesis concludes that the clinical gain of DIBH is not always beneficial over FB treatments. There were additionally identified severe tumor-size dependent dose deviations that were large enough to potentially have implications for lung cancer radiotherapy treatment planning. The scintillator system and the heterogeneous phantom provide a promising tool for critical evaluation of complex radiotherapy calculations and dose delivery

Similar works

This paper was published in Online Research Database In Technology.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.