Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A low-power asynchronous data-path for a FIR filter bank

Abstract

This paper describes a number of design issues relating to the implementation of low-power asynchronous signal processing circuits. Specifically, the paper addresses the design of a dedicated processor structure that implements an audio FIR filter bank which is part of an industrial application. The algorithm requires a fixed number of steps and the moderate speed requirement allows a sequential implementation. The latter, in combination with a huge predominance of numerically small data values in the input data stream, is the key to a low-power asynchronous implementation. Power is minimized in two ways: by reducing the switching activity in the circuit, and by applying adaptive scaling of the supply voltage, in order to exploit the fact that the average case latency as 2-3 times better than the worst case. The paper reports on a study of properties of real life data, and discusses the implications it has on the choice of architecture, handshake-protocol, data-encoding, and circuit design. This includes a tagging scheme that divides the data-path into slices, and an asynchronous ripple carry adder that avoids a completion tree

Similar works

This paper was published in Online Research Database In Technology.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.