Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Abstract

Objective: Inflammatory bowel diseases cause significant morbidity and mortality. Aberrant NF-κB signalling is strongly associated with these conditions, and several established drugs influence the NF-κB signalling network to exert their effect. This study aimed to identify drugs which alter NF-κB signalling and may be repositioned for use in inflammatory bowel disease. Design: The SysmedIBD consortium established a novel drug-repurposing pipeline based on a combination of in-silico drug discovery and biological assays targeted at demonstrating an impact on NF-kappaB signalling, and a murine model of IBD. Results: The drug discovery algorithm identified several drugs already established in IBD, including corticosteroids. The highest-ranked drug was the macrolide antibiotic Clarithromycin, which has previously been reported to have anti-inflammatory effects in aseptic conditions. Clarithromycin's effects were validated in several experiments: it influenced NF-κB mediated transcription in murine peritoneal macrophages and intestinal enteroids; it suppressed NF-κB protein shuttling in murine reporter enteroids; it suppressed NF-κB (p65) DNA binding in the small intestine of mice exposed to LPS, and it reduced the severity of dextran sulphate sodium-induced colitis in C57BL/6 mice. Clarithromycin also suppressed NF-κB (p65) nuclear translocation in human intestinal enteroids. Conclusions: These findings demonstrate that in-silico drug repositioning algorithms can viably be allied to laboratory validation assays in the context of inflammatory bowel disease; and that further clinical assessment of clarithromycin in the management of inflammatory bowel disease is required

Similar works

Full text

thumbnail-image

The University of Manchester - Institutional Repository

redirect
Last time updated on 05/10/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.