Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A Review of DC Shipboard Microgrids:Part I: Power Architectures, Energy Storage and Power Converters

Abstract

Integrated power systems are popular in the shipbuilding industry. DC shipboard microgrids (dc-SMGs) have many advantages compared with ac ones in terms of system efficiency, operation flexibility, component size, and fault protection performance. Being in the exploring stage, dc-SMGs have several potential configurations with different system architectures and voltage levels. In a dc-SMG, functional blocks integrated include power generation modules (PGMs), propulsion system, high power loads, and pulsed loads specifically in naval ships. In modern ships, the PGMs include not only generators and fuel cells but also energy storage systems (ESSs), which cooperate with generators to improve the overall efficiency and reliability. High power electric converters are vital interfaces between the functional blocks and the dc distribution system. Rectifiers for generators take the tasks of dc bus voltage regulation and power sharing. Inverters for propulsion motors are responsible for the motor drive in different operating conditions. Bidirectional dc/dc converters for ESSs are used to provide supply-demand balance and voltage fluctuation mitigation. This article makes a comprehensive review of power architecture, functional blocks including electrical machines and energy storage, as well as power converters in dc shipboard power systems.</p

Similar works

This paper was published in VBN.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.