Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Abstract

Memristors show great potential for being integrated into CMOS technology and provide new approaches for designing computing-in-memory (CIM) systems, brain-inspired applications, trimming circuits and other topologies for the beyond-CMOS era. A crucial characteristic of the memristor is multi-state 1 switching. Memristors are capable of representing information in an ultra-compact fashion, by storing multiple bits per device. However, certain challenges remain in multi-state memristive circuits and systems design such as device stability and peripheral circuit complexity. In this paper, we review the state of the art of multi-state memristor technologies and their associated CMOS/Memristor circuit design, and discuss the challenges regarding device imperfection factors, modelling, peripheral circuit design and layout. We present measurement results of our in-house fabricated multi-state memristor as an example to further illustrate the feasibility of applying multi-state memristors in CMOS design, and demonstrate their related future applications such as multi-state memristive memories in machine learning, memristive neuromorphic applications, trimming and tuning circuits, etc. In the end, we summarize past and present efforts done in this field and envisage the direction of multi-state memristor related research.</p

Similar works

This paper was published in Edinburgh Research Explorer.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.