Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Analytical Channel Model and Link Design Optimization for Ground-to-HAP Free-Space Optical Communications

Abstract

Integrating high altitude platforms (HAPs) and free space optical (FSO) communications is a promising solution to establish high data rate aerial links for the next generation wireless networks. However, practical limitations such as pointing errors and angle-of-arrival (AOA) fluctuations of the optical beam due to the orientation deviations of hovering HAPs make it challenging to implement HAP-based FSO links. For a ground-to-HAP FSO link, tractable, closed-form statistical channel models are derived in this article to simplify optimal design of such systems. The proposed models include the combined effects of atmospheric turbulence regimes (i.e., log-normal and gamma-gamma), pointing error induced geometrical loss, pointing jitter variance caused by beam wander, detector aperture size, beam-width, and AOA fluctuations of the received optical beam. The analytical expressions are corroborated by performing Monte - Carlo simulations. Furthermore, closed-form expressions for the outage probability of the considered link under different turbulence regimes are derived. Detailed analysis is carried out to optimize the transmitted laser beam and the field-of-view of the receiver for minimizing outage probability under different channel conditions. The obtained analytical results can be applied to finding the optimal parameter values and designing ground-to-HAP FSO links without resorting to time-consuming simulations. </p

Similar works

This paper was published in Edinburgh Research Explorer.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.