Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Electrically Small Antenna For RFID-based Implantable Medical Sensor

Abstract

We present a sub-GHz, low profile Electrically Small Antenna (ESA), designed for UHF RFID miniaturised battery free Implantable Wireless Medical Devices (IWMDs). The custom ESA is a linearly polarised dipole, and its topology leverages a meanderline structure to miniaturise its form factor. Furthermore, the ESA utilises a receded ground plane to improve its gain performance and achieve resonance, at the desired sub-GHz design frequency of 915 MHz. The ESA's dipole characteristics provide an added benefit of 180° bi-directional RF signal propagation. The ESA's design was optimised to integrate the footprint of a UHF RFID sensor chip (SL900A). By integrating the UHF RFID chip on the ESA, a complete wireless battery free sensory medical device, with an integrated antenna, can be realised. The antenna has a formfactor of 12.75× 12.25× 0.29 mm3. A prototype of the proposed ESA was fabricated and encapsulated in Polydimethylsiloxane (PDMS). Measurements of the prototyped ESA's input reflection coefficient (S11) and farfield gain values, at 915 MHz, were -26.44 dB and -18.88 dBi, respectively and demonstrated significantly better gain and efficiency performance, when compared to peer reviewed work. The ESA can be used as an antenna for various battery-free subcutaneous implants with a connected sensor (e.g., temperature) or actuator (e.g., neurostimulator).</p

Similar works

This paper was published in Edinburgh Research Explorer.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.