Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Analysis of unsupervised cross-lingual speaker adaptation for HMM-based speech synthesis using KLD-based transform mapping

Abstract

In the EMIME project, we developed a mobile device that performs personalized speech-to-speech translation such that a user’s spoken input in one language is used to produce spoken output in another language, while continuing to sound like the user’s voice. We integrated two techniques into a single architecture: unsupervised adaptation for HMM-based TTS using word-based large-vocabulary continuous speech recognition, and cross-lingual speaker adaptation (CLSA) for HMM-based TTS. The CLSA is based on a state-level transform mapping learned using minimum Kullback–Leibler divergence between pairs of HMM states in the input and output languages. Thus, an unsupervised cross-lingual speaker adaptation system was developed. End-to-end speech-to-speech translation systems for four languages (English, Finnish, Mandarin, and Japanese) were constructed within this framework. In this paper, the English-to-Japanese adaptation is evaluated. Listening tests demonstrate that adapted voices sound more similar to a target speaker than average voices and that differences between supervised and unsupervised cross-lingual speaker adaptation are small. Calculating the KLD state-mapping on only the first 10 mel-cepstral coefficients leads to huge savings in computational costs, without any detrimental effect on the quality of the synthetic speech

Similar works

This paper was published in Edinburgh Research Explorer.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.