Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

QoS-Driven Resource Allocation and EE-Balancing for Multiuser Two-Way Amplify-and-Forward Relay Networks

Abstract

Abstract:In this paper, we study the problem of energy-efficient resource allocation in multiuser two-way amplify-and-forward (AF) relay networks with the aim of maximizing the energy efficiency (EE), while ensuring the quality-of-service (QoS) requirements and balancing the EE of the user links. We formulate an EE-balancing optimization problem that maximizes the ratio of the spectral efficiency (SE) over the total power dissipation subject to QoS and a limited transmit power constraints. The problem which maximizes the EE by jointly optimizing the subcarrier pairing, power allocation, and subcarrier allocation, turns out to be a non-convex fractional mixed-integer nonlinear programming problem which has an intractable complexity in general. We apply a concave lower bound on the achievable sum rate and a series of convex transformations to make the problem convex one and propose an iterative algorithm for iteratively tightening the lower bound and finding the optimal solution through dual decomposition approach. Additionally, a low-complexity suboptimal algorithm is investigated. We then characterize the impact of various network parameters on the attainable EE and SE of the network employing both EE maximization and SE maximization algorithms when the network is designed from the energy-efficient perspective. Simulation results demonstrate the effectiveness of the proposed algorithms

Similar works

This paper was published in Edinburgh Research Explorer.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.