Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A PCP Characterization of AM

Abstract

We introduce a 2-round stochastic constraint-satisfaction problem, and show that its approximation version is complete for (the promise version of) the complexity class AM. This gives a “PCP characterization” of AM analogous to the PCP Theorem for NP. Similar characterizations have been given for higher levels of the Polynomial Hierarchy, and for PSPACE; however, we suggest that the result for AM might be of particular significance for attempts to derandomize this class.To test this notion, we pose some hypotheses related to our stochastic CSPs that (in light of our result) would imply collapse results for AM. Unfortunately, the hypotheses may be over-strong, and we present evidence against them. In the process we show that, if some language in NP is hard-on-average against circuits of size 2Ω(n), then there exist “inapproximable-on-average” optimization problems of a particularly elegant form.All our proofs use a powerful form of PCPs known as Probabilistically Checkable Proofs of Proximity, and demonstrate their versatility. We also use known results on randomness-efficient soundness- and hardness-amplification. In particular, we make essential use of the Impagliazzo-Wigderson generator; our analysis relies on a recent Chernoff-type theorem for expander walks

Similar works

This paper was published in Edinburgh Research Explorer.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.