Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Biocidal Activity of Fast Pyrolysis Biochar against E. coli O157:H7 in Soil Varies Based on Production Temperature or Age of Biochar

Abstract

Soils in which fresh produce is grown can become contaminated with foodborne pathogens and are sometimes then abandoned or removed from production. The application of biochar has been proposed as a method of bioremediating such pathogen-contaminated soils. The objectives of the present study were to evaluate three fast-pyrolysis–generated biochars (FPBC; pyrolyzed in house at 450, 500, and 600°C in a newly designed pyrolysis reactor) and 10 United Kingdom Biochar Research Center (UKBRC) standard slow-pyrolysis biochars to determine their effects on the viability of four surrogate strains of Escherichia coli O157:H7 in soil. A previously validated biocidal FPBC that was aged for 2 years was also tested with E. coli to determine changes in antibacterial efficacy over time. Although neither the UKBRC slow-pyrolysis biochars or the 450 and 500°C FPBC from the new reactor were antimicrobial, the 600°C biochar was biocidal (P < 0.05); E. coli populations were significantly reduced at 3 and 3.5% biochar concentrations (reductions of 5.34 and 5.84 log CFU/g, respectively) compared with 0.0 to 2.0% biochar concentrations. The aged 500°C FPBC from the older reactor, which was previously validated as antimicrobial, lost efficacy after aging for 2 years. These results indicate that the biocidal activity of FPBC varies based on production temperature and/or age

Similar works

This paper was published in Edinburgh Research Explorer.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.