Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Memristor-Assisted Background Calibration for SAR ADCs: A Feasibility Study

Abstract

This paper proposes a memristor-assisted sign-based background calibration scheme for analog-to-digital converters (ADCs). The scheme was implemented and validated in a 12-bit asynchronous successive approximation register (SAR) ADC, which consists of a hybrid binary weighted/R-2R digital-to-analog converter (binary/R-2R DAC) and other peripheral circuits. This hybrid DAC, in which one redundancy bit is introduced, is built with a memristor and standard polysilicon resistors. The proposed calibration technique can detect the errors caused by DAC mismatches and correct them by adjusting the resistance of the memristor (memristance) in a feedback loop. The implemented circuit takes the memristor's advantages such as small area and resistance switching property. The proposed scheme has been designed and simulated in a standard 180 nm CMOS process. Eventually, a monolithic CMOS/memristor chip will be fabricated with the CMOS part processed at a standard foundry and the memristors integrated through post-CMOS processing in house. Simulation results demonstrate the feasibility of exploiting memristors to improve the linearity of high-resolution SAR ADCs. The designed calibration scheme can effectively reduce the integral non-linearity (INL) and differential non-linearity (DNL) of the 12-bit SAR ADC.</p

Similar works

This paper was published in Edinburgh Research Explorer.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.