Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

High-Resolution Conductivity Reconstruction by Electrical Impedance Tomography using Structure-Aware Hybrid-Fusion Learning

Abstract

Background: Electrical impedance tomography (EIT) has gained considerable attention in the medical field for the diagnosis of lung-related diseases, owing to its non-invasive and real-time characteristics. However, due to the ill-posedness and underdetermined nature of the inverse problem in EIT, suboptimal reconstruction performance and reduced robustness against the measurement noise and modeling errors are common issues. Objectives: This study aims to mine the deep feature information from measurement voltages, acquired from the EIT sensor, to reconstruct the high-resolution conductivity distribution and enhance the robustness against the measurement noise and modeling errors using the deep learning method. Methods: A novel data-driven method named the structure-aware hybrid-fusion learning (SA-HFL) is proposed. SA-HFL is composed of three main components: a segmentation branch, a conductivity reconstruction branch, and a feature fusion module. These branches work in tandem to extract different feature information from the measurement voltage, which is then fused to reconstruct the conductivity distribution. The unique aspect of this network is its ability to utilize different features extracted from various branches to accomplish reconstruction objectives. To supervise the training of the network, we generated regular-shaped and lung-shaped EIT datasets through numerical calculations. Results: The simulations and three experiments demonstrate that the proposed SA-HFL exhibits superior performance in qualitative and quantitative analyses, compared with five cutting-edge deep learning networks and the optical image-guided group sparsity (IGGS) method. The evaluation metrics, relative error (RE), mean structural similarity index (MSSIM), and peak signal-to-noise ratio (PSNR), are improved by implementing the SA-HFL method. For the regular-shaped dataset, the values are 0.119 (RE), 0.9882 (MSSIM), and 31.03 (PSNR). For the lung-shaped dataset, the values are 0.257 (RE), 0.9151 (MSSIM), and 18.67 (PSNR). Furthermore, the proposed network can be executed with appropriate parameters and efficient floating-point operations per second (FLOPs), concerning network complexity and inference speed. Conclusions: The reconstruction results indicate that fusing feature information from different branches enhances the accuracy of conductivity reconstruction in the EIT inverse problem. Moreover, the study shows that fusing different modalities of information to reconstruct the EIT conductivity distribution may be a future development direction.</p

Similar works

This paper was published in Edinburgh Research Explorer.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.