Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Active control of dispersion within a channel with flow and pulsating walls

Abstract

Channels are fundamental building blocks from biophysics to soft robotics, often used to transport or separate solutes. As solute particles inevitably transverse between streamlines along the channel by molecular diffusion, the effective diffusion of the solute along the channel is enhanced, an effect known as Taylor dispersion. Here we investigate how the Taylor dispersion effect can be suppressed or enhanced in different settings. Specifically, we study the impact of flow profile and active or pulsating channel walls on Taylor dispersion. We derive closed analytic expressions for the effective dispersion equation in all considered scenarios providing hands-on effective dispersion parameters for a multitude of applications. In particular, we find that active channel walls may lead to three regimes of dispersion: either dispersion decrease by entropic slow down at small Peclet number, or by dispersion increase at large Peclet number dominated either by shuttle dispersion, or by Taylor dispersion. This improves our understanding of solute transport, e.g., in biological active systems such as blood flow, and opens a number of possibilities to control solute transport in artificial systems such as soft robotics

Similar works

Full text

thumbnail-image

MPG.PuRe

redirect
Last time updated on 01/12/2019

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.