Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Generation of a quasi-monoergetic proton beam from laser-irradiated sub-micron droplets

Abstract

Proton bursts with a narrow spectrum at an energy of (2.8 +/- 0.3 MeV) are accelerated from sub-micron water spray droplets irradiated by high-intensity (similar to 5 x 10(19)W/cm(2)), high-contrast (similar to 10(10)), ultra-short (40 fs) laser pulses. The acceleration is preferentially in the laser propagation direction. The explosion dynamics is governed by a residual ps-scale laser pulse pedestal which "mildly" preheats the droplet and changes its density profile before the arrival of the high intensity laser pulse peak. As a result, the energetic electrons extracted from the modified target by the high-intensity part of the laser pulse establish an anisotropic electrostatic field which results in anisotropic Coulomb explosion and proton acceleration predominantly in the forward direction. Hydrodynamic simulations of the target pre-expansion and 3D particle-in-cell simulations of the measured energy and anisotropy of the proton emission have confirmed the proposed acceleration scenario. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731712]</p

Similar works

This paper was published in Queen's University Belfast Research Portal.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.