Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Novel lightweight FF-APUF design for FPGA

Abstract

Physical unclonable functions (PUFs), are a new type of physical security primitive which enable digital identifiers to be extracted from devices, such as field programmable gate arrays (FPGAs) or application specific integrated circuits (ASICs). Due to their flexibility and lower time to market, FPGAs are increasingly used for many applications. Arbiter PUFs (APUFs) are among the most widely studied PUF designs. However, they often suffer from poor uniqueness and reliability characteristics, are difficult to implement in FPGAs and consume excessive FPGA resources. To address these problems, a new Flip-flop based APUF (FF-APUF) design is proposed that offers a compact architecture, combined with strong uniqueness and good reliability. It is specifically designed for FPGAs. The proposed work is verified on a low-cost Nexys4 board based on the latest 28 nm technology Xilinx Artix-7 FPGA. The proposed FF-APUF circuit for generating a 1-bit response consumes only 44 slices, which is a saving of more than 66% in hardware resources over previous related research. Moreover, experimental results show improvements in both uniqueness and reliability. In particular, the expected uniqueness of the response bits is 40% on FPGA, which significantly improves upon a uniqueness of 9% achieved in previous work.</p

Similar works

Full text

thumbnail-image

Queen's University Belfast Research Portal

redirect

This paper was published in Queen's University Belfast Research Portal.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.