Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Automatic machine learning:methods, systems, challenges

Abstract

This open access book presents the first comprehensive overview of general methods in Automatic Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first international challenge of AutoML systems. The book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. Many of the recent machine learning successes crucially rely on human experts, who select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters; however the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself

Similar works

This paper was published in Pure OAI Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.