Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Bridge-Depth Characterizes which Minor-Closed Structural Parameterizations of Vertex Cover Admit a Polynomial Kernel

Abstract

We study the kernelization complexity of structural parameterizations of the Vertex Cover problem. Here, the goal is to find a polynomial-time preprocessing algorithm that can reduce any instance (G, k) of the Vertex Cover problem to an equivalent one, whose size is polynomial in the size of a predetermined complexity parameter of G. A long line of previous research deals with parameterizations based on the number of vertex deletions needed to reduce G to a member of a simple graph class F, such as forests, graphs of bounded tree-depth, and graphs of maximum degree two. We set out to find the most general graph classes F for which Vertex Cover parameterized by the vertex-deletion distance of the input graph to F admits a polynomial kernelization. We give a complete characterization of the minor-closed graph families F for which such a kernelization exists. We introduce a new graph parameter called bridge-depth, and prove that a polynomial kernelization exists if and only if F has bounded bridge-depth. The proof is based on an interesting connection between bridge-depth and the size of minimal blocking sets in graphs, which are vertex sets whose removal decreases the independence number.</p

Similar works

This paper was published in Pure OAI Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.